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Response of a stochastic bistable model driven by strong time-dependent fields
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The long time response of a bistable stochastic model driven by large amplitude time-dependent
sinusoidal fields is investigated by numerically solving the Langevin or the Fokker-Planck equation. The
noise average behavior is oscillatory in time. For a given strength of the driving field, the behavior with
the noise of the amplitude and phase of the fundamental harmonics of the average response depends on
the frequency. For large driving frequencies, both magnitudes show maxima for two different values of
the noise intensity. For a small enough external frequency, those maxima are absent.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

The dynamics of a nonlinear stochastic system, subject
to the action of a time-dependent external force, show a
variety of interesting phenomena which have been pro-
fusely studied in recent years [1,2]. In particular, a great
deal of work has been devoted to the analysis of the
long-time response of a stochastic bistable system driven
by a sinusoidal time-dependent force. For weak enough
fields, the long-time noise average of the relevant degree
of freedom shows time oscillations with a frequency equal
to the external one, 0, and out of phase with the driving
term by an amount —¢,. The amplitude of the oscilla-
tions, a;, and the phase-shift present nonmonotonic
behaviors with the noise intensity when () is much small-
er than the intrawell relaxation frequency. These
behaviors have been analyzed by several analytical and
numerical techniques [3]. The maximum in the phase
shift reflects the competition between the interwell and
intrawell motions, while the peak in the amplitude corre-
sponds to the matching of the frequency of the noise in-
duced switching events between wells and the driving fre-
quency.

As long as the strength of the external force is kept
sufficiently small, the bistable character is maintained
during an external cycle. Then, the long-time probability
distribution is only slightly distorted with respect to the
unperturbed equilibrium one. It shows a bimodal struc-
ture with peak heights which oscillate in time. An
analysis of the dynamics based on the ideas of linear-
response theory (LRT) as carried out by Dykman et al.
[3], seems adequate then. On the other hand, for strong
fields, the bistable character of the potential is lost during
an external period. The perturbation is so large that the
validity of a LRT with an unperturbed spectral density
appropriate for a bistable potential may become question-
able. Jung and Hanggi [3] have recently studied the
problem by numerically solving the corresponding
Fokker-Planck equation (FPE) with a matrix continued
fraction method. They find that, for some values of the
external amplitude and frequency, the peak in the ampli-
tude of the system response still survives, but the phase
shift shows a monotonic behavior with D. We have also
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addressed this problem by numerically solving the FPE
with a different numerical procedure [4]. Our results sug-
gested that as the strength of the field is increased, both
magnitudes should show peaks. The positions of the
maxima are shifted with respect to the weak-field case
with the peak of —¢; showing up for a value of the noise
intensity smaller than the one for which a, reaches its
maximum. Unfortunately, the numerical procedure used
in Ref. [4] is not reliable for very small values of the
noise. Therefore, in this work we have explored this re-
gion of strong fields and very weak noises by numerically
solving the corresponding Langevin equation. We find
that both the amplitude and the phase shift of the system
response show peaks for strong fields when the external
frequency is large enough, while those peaks disappear
for low-frequency fields.

The rest of the paper is organized as follows. In Sec.
II, we analyze the dynamics of the system driven by a
time-dependent force but in the absence of a noise term.
The behavior of the deterministic trajectories is useful to
understand the behavior when noise is present. The sto-
chastic model is introduced in Sec. III. The results of nu-
merical solutions of the evolution equations are discussed
in Sec. IV. Finally, in Sec. V, we present our main con-
clusions.

II. DYNAMICS IN THE ABSENCE OF NOISE

Let us consider a system with a relevant degree of free-
dom x, whose dynamical evolution is given by (in dimen-
sionless form)

%=—U’(x)+2$cosﬂt , (1)
where the prime indicates the derivative of the bistable
potential U(x)=—x2/2+x*/4. U(x) has two minima
at the points x =1, —1 separated by a barrier with height
AU=1 located at x=0. The last term of Eq. (1)
represents the effect of a driving external field.

In the case of zero frequency, (2=0), the external field
breaks the symmetry of the potential. The location of the
extrema and their heights depend upon the strength of
the driving field in such a way that for S > S, (0)=1V3,
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the potential loses its bistable character. For nonzero fre-
quencies and small values of the amplitude of the driving
field, [S <<S.(0)], the system behavior can be under-
stood by linearizing Eq. (1) around the minima of the
wells. The deterministic trajectory remains confined
within the region of attraction of the initial minima. For
long times, the particle describes oscillations with fre-
quency Q, amplitude a =25 /(4+Q?)!/? and out of phase
with the driving field. The phase lag is given by
—¢o=arc tan(/2). For frequencies much smaller than
the well frequency, the amplitude a is similar to that of
the external term, and its value decreases as ) is in-
creased. The phase lag is very small for low frequencies
and it tends to —#/2 for large ones. These results are
corroborated by a numerical solution of Eq. (1) by means
of a fourth-order Runge-Kutta integrator [5].

For strong fields, linearization around the minima is
not correct and one has to resort to numerical solutions.
The driving term distorts the shape of the unperturbed
potential, U(x), in such a way that the system might not
feel a bistable potential during an entire external cycle
and the trajectories may explore both regions of attrac-
tion depending upon the values of () and S. The long-
time trajectories show oscillatory behavior. For a given
Q, there exists a value of the field strength, S; (), such
that for S <S;(Q), there are two centers of oscillations
symmetrically located around x =0. For S >S;(Q) both
centers coalesce into one located at zero. The transition
points are indicated in Fig. 1. For very small frequencies,
S; () tends to its zero-frequency value S;(0). For pa-
rameter values corresponding to points lying below the
circles, the trajectories might cross the origin but the
centers of oscillations remain confined within the initial
region of attraction although the strength of the driving
can be substantially larger than the one required to des-
troy bistability in the static case. On the other hand, for
parameter values above the transition line, the oscilla-
tions are around the origin with fairly large amplitude
and out of phase with the driving term by a large
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FIG. 1. Diagram showing the transition line in the S,
plane, characterizing the long-time deterministic trajectories
(see text).

amount. In this sense, one can say that the field alone is
then capable of inducing switching between both regions
of the x axis.

For low frequencies, the transition between both types
of behavior is very abrupt. The two centers of oscilla-
tions remain located essentially around =*1 until S
reaches its transition value. Then their locations sudden-
ly coalesce into zero. The amplitude of the oscillations
also shows a sudden change in its value as S crosses the
transition line. This can be seen in the plots for 1=0.1
in Fig. 2. On the other hand, for large frequencies, the
oscillation centers gradually coalesce into zero as S in-
creases from S; (0) to its transition values S; (£2) and the
amplitude has an almost linear behavior with S. An ex-
ample of this is shown in Fig. 3 for 2=2.0.

III. STOCHASTIC SYSTEM

We now consider the effect of noise on the dynamics.
The relevant degree of freedom satisfies now the
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1 FIG. 3. Same as in Fig. 2, for =2.0.
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Langevin equation
ox _ ,
—aT—-—U(x)+2Scoth+77(t) , (2)

where 7(¢) is a Gaussian white noise with zero mean and
correlation function (7(t)n(s))=D&(t —s). The corre-
sponding FPE for the probability density is

3P(x,1) _ 3

) — D &P
Y ax[U(x) 2ScosQt 1P+

2 ax?’

As indicated in Sec. I, the properties of the nonstationary
stochastic process x (¢) have been analyzed by a variety of
analytical procedures which are reviewed in Refs. [1] and
[2]. The long-time probability distribution is a time
periodic function which depends only on the values of
D, S, and Q and is independent of the initial preparation
of the system [6]. The long-time noise average {x(t))
shows oscillations described by the expression

(x()) o=3 a,cos(nQt+4¢,) . 4)

n=1

(3)

For small amplitude driving fields, it is possible to de-
scribe these oscillations by using, for instance, linear-
response theory (LRT) [3]. As Dykman and co-workers
have shown both the amplitude a and the phase shift ¢,
of the fundamental harmonic can be calculated in terms
of the susceptibility of the system, which in turn is relat-
ed with the spectral density of the unperturbed system
via the fluctuation-dissipation theorem. The validity of
LRT is restricted to situations such that the external field
does not induce large deviations of the probability density
with respect to its unperturbed form. But for strong
driving fields, these deviations become so large that LRT
might become invalid.

In this work, we are interested in the long-time
response of the stochastic system driven by large ampli-
tude fields. We will resort to the numerical solution of ei-
ther the Langevin or the FP equation in order to analyze
the combined effects of noise, nonlinearity, and external

fields. For small values of the noise strength D, the
Langevin equation is solved by generating a sufficiently
large number of stochastic trajectories starting from a
given initial condition x (0) [7]. Averaging over the ran-
dom trajectories one then finds the noise average
behavior. For large D, this procedure becomes too ex-
pensive due to the excessive number of trajectories need-
ed to get reliable statistics. Thus, for large D, we solve
the corresponding FPE using a numerical technique
based on the split operator method introduced by Feit,
Fleck, and Steigel to deal with the time-dependent
Schrédinger equation [8). We have previously used this
procedure in the analysis of the system in the absence of
external field [9] as well as in the study of stochastic reso-
nance for weak external fields [4]. The details of the nu-
merical method can be found in Ref. [9].

IV. RESULTS

Let us consider the long-time response of the system
driven by a field with $=0.2 and Q=0.1. From the
analysis of the deterministic limit (D =0) we know that
the long-time solution corresponds to oscillations around
a center near the minimum of the initial well and lagging
behind the driving term by a small amount. For small
values of D (D <0.1) the long-time noise average is ob-
tained from the Langevin equation, while for larger
values of D, the response is evaluated from the solution of
the FPE. Fourier analysis of {x(¢)) . shows that the am-
plitude of the fundamental harmonics in the sum indicat-
ed in Eq. (4) is still much larger than those of the rest of
the odd harmonics, while the even ones are zero as ex-
pected. For very small D, the amplitude a, and phase
shift —¢, of the oscillations are quite similar to those of
the deterministic case, although the center of oscillation
has now been shifted to the origin. This indicates that,
even for very weak noise, sooner or later the particle is
able to escape the initial well by contrast with the noise
free case. As D is increased, there is a sharp increase in
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both a; and —¢,, with the absolute value of the phase
shift reaching a maximum at D =~0.02, a value about ten
times smaller than that for which the amplitude reaches
its maximum (D =0.24). The fact that the peak in the
phase shift shows up for smaller values of the noise than
that of the amplitude was also present in the case of sto-
chastic resonance with weak fields and low frequencies
[3,4]. The overall nonmonotonic behavior observed in
both magnitudes is presented in Fig. 4. Our results for
the amplitude coincide with those reported by Jung and
Hanggi [3], but are at variance with their findings for the
phase shift.

For weak fields and ) much smaller than the relaxa-
tion frequency within a well of the unperturbed potential,
the analytical theories (LRT, two-state theory, etc.) show
that the peak in the amplitude occurs for a value of D
such that the external frequency equals twice the Kra-
mers frequency for the noise induced hopping over the
potential barrier. For the strong field considered here,
twice the Kramers frequency at the noise value for which
a, has its maximum, is about 0.056 which is much small-
er than the external frequency. To understand the
behavior in Fig. 4 we notice that, even though the driving
field is so strong that the time-dependent potential felt by
the system loses its bistable character during an external
period, the driving frequency is such that the determinis-
tic trajectory remains confined within the initial attrac-
tion region. Thus the external field alone is not enough
to induce the switching events. Once the noise is added,
the particle will be able to cross the point x =0. The
maximum observed indicates that there is a resonance
effect between the driving frequency and the frequency of
switching events between the wells of the unperturbed
potential. This frequency is not due exclusively to the in-
terplay of noise and nonlinearity but it is accelerated by
the external field. It is then clear that the behavior ob-
served for this strong field cannot be adequately de-
scribed in terms of a LRT with a spectral density corre-
sponding to an unperturbed bistable potential as in the
weak-field case, where D is the only parameter character-
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izing the hopping rate. Nonetheless, the qualitative
feature of the presence of peaks in the amplitude and the
phase shift are still present. The maximum in the phase
shift arises because of the intrawell dynamics, while that
of the amplitude reflects the matching of the external fre-
quency with the hopping one. The output of the system
indicates an amplification of the input signal for some
range of values of D, but the degree of amplification is
much smaller than in the weak-field case.

In Fig. 5 we show the effect of noise in the response of
the system for S$ =0.25 and 1=0.1. From the analysis of
Sec. II we know that for these parameter values, the
external field alone is enough to induce switching be-
tween the wells. Then, monotonic behaviors with the
noise strength in the amplitude and phase of the funda-
mental harmonics of the average response are expected.
For very small D, the quantities @, and —¢, have values
which are close to their deterministic limits. As noise in-
creases, —¢, decreases monotonically, while the ampli-
tude decreases first for D <0.05, then remains about con-
stant until the noise strength is about 0.15, and it contin-
ues to decrease for higher values of D. For this small fre-
quency, neither the amplitude nor the phase shift present
maxima for finite values of D.

Let us now consider the behavior when the driving fre-
quency is increased to =2, while S is kept constant at
S§'=0.25. As it is shown in Fig. 6, the phase — ¢, starts at
its deterministic value, rising until D~=0.4. Then, it
shows a broad maximum followed by a decrease towards
values smaller than the deterministic one for large D.
The amplitude shows a maximum for a large value of the
noise, D~1.4, and a secondary small peak for a small
value of D (D =0.12) For these values of the parame-
ters, the driving field alone is not enough to produce
switching between the unperturbed wells. On the other
hand, the primary maximum occurs for a value of D so
large that Kramers formula is not valid. In a previous
work [9], we analyzed the relaxation process in the un-
perturbed model for large values of D and we found a
hopping frequency much larger than the one given by the
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FIG. 5. Same as in Fig. 4, for $§=0.25 and
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Kramers formula. Still, twice those values are much
smaller than the external frequency considered here. The
existence of the maximum then indicates that the hop-
ping rate is accelerated by the external field with respect
to its thermal value. It is worth noting that in this high-
frequency case, the amplitude of the response is smaller
than that of the driving term and there is no
amplification by contrast with the low-frequency case of
Fig. 4.

V. CONCLUSIONS

In this work we have analyzed some aspects of the
long-time response of a bistable stochastic system driven
by large amplitude external fields. In the absence of
noise, the particle trajectory may or may not cross the
origin depending upon the values of the field parameters,
even though its amplitude is larger than the one required
to destroy bistability at zero frequency. The numerical
solutions of the Langevin or the FP equations indicate

that the amplitude and phase shift of the fundamental
harmonics of the response show monotonic behaviors
with the noise strength when the external field alone in-
duces switching between the wells. On the other hand, if
the driving parameters are such that noise is needed to
observe switching, then the amplitude and phase shift of
the fundamental harmonics of the long-time response of
the system show maxima for some values of D. As in the
weak-field case analyzed in Refs. [3] and [4], the max-
imum of the phase lag appears for a lower value of the
noise than that for which the amplitude is maximum.
The mechanisms giving rise to those maxima are essen-
tially the same as for weak fields. Namely, the behavior
of the phase lag shows the effect of the intrawell dynam-
ics, while the maxima of the amplitude reflects the
matching of twice the hopping frequency and the exter-
nal one. By contrast with the low-field case, the maxima
appears at such values of D for which the hopping rate is
not well described by Kramers formula. Large ampli-
tude fields accelerate the hopping rate with respect to its

FIG. 6. Same as in Fig. 4, for $=0.25 and
Q=2.0.
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thermal value. The response of the system shows a small
amplification with respect to the input term when the
driving frequency is small. For large frequencies, even
though the amplitude shows a maximum, it is very flat
and there is no amplification.
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